The Resource Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)
Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)
Resource Information
The item Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Bowdoin College Library.This item is available to borrow from 1 library branch.
Resource Information
The item Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Bowdoin College Library.
This item is available to borrow from 1 library branch.
- Language
- eng
- Extent
- 1 online resource (ix, 93 pages)
- Contents
-
- Preliminaries and Statement of results
- Some preliminary notation
- Main results
- Quantum groups, actions, and cohomology
- Listings
- Quantum enveloping algebras
- Connections with algebraic groups
- Root vectors and PBW-basis
- Levi and parabolic subalgebras
- The subalgebra Uq(uj)
- Adjoint action
- Finite dimensionality of cohomology groups
- Spectral sequences and Euler characteristic
- Induction functors
- Computation of and N
- Subroot systems defined by weights
- The case of the classical Lie algebras
- Standardizing
- Resolution of singularities
- Normality of orbit closures
- Combinatorics and the Steinberg Module
- Steinberg weights
- Weights of
- Multiplicity of the Steinberg module
- Proof of Proposition 4.2.1
- The weight
- Types Bn, Cn, Dn
- Type An
- Type An with l dividing n + 1
- Exceptional Lie algebras
- The Cohomology Algebra H
- Spectral sequences, I
- Spectral sequences, II
- An identification theorem
- Spectral sequences, III
- Proof of main result, Theorem 1.2.3, I
- Spectral sequences, IV
- Proof of the main result, Theorem 1.2.3, II
- Finite Generation
- A finite generation result
- Proof of part (a) of Theorem 1.2.4
- Proof of part (b) of Theorem 1.2.4
- Comparison with Positive Characteristic
- The setting
- Assumptions
- Consequences
- Special cases
- Support Varieties over for the Modules and
- Quantum support varieties
- Lower bounds on the dimensions of support varieties
- Support varieties of : general results
- Support varieties of when l is good
- A question of naturality of support varieties
- The Constrictor Method I
- The Constrictor Method II
- Support varieties of when l is bad
- E6 when 3 l
- F4 when 3 l
- E7 when 3 l
- E8 when 3 l, 5 l
- Support varieties of when l is bad. 650 0 $a Cohomology operations
- Isbn
- 9780821891759
- Label
- Cohomology for quantum groups via the geometry of the nullcone
- Title
- Cohomology for quantum groups via the geometry of the nullcone
- Statement of responsibility
- Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1969-
- http://library.link/vocab/creatorName
- Bendel, Christopher P.
- Index
- no index present
- Language note
- Text in English
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
-
- 1964-
- 1945-
- 1959-
- http://library.link/vocab/relatedWorkOrContributorName
-
- Nakano, Daniel K.
- Parshall, Brian
- Pillen, Cornelius
- American Mathematical Society
- Series statement
- Memoirs of the American Mathematical Society,
- Series volume
- volume 229, number 1077
- http://library.link/vocab/subjectName
-
- Cohomology operations
- Algebraic topology
- Label
- Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)
- Bibliography note
- Includes bibliographical references (pages 89-93)
- Contents
- Preliminaries and Statement of results -- Some preliminary notation -- Main results -- Quantum groups, actions, and cohomology -- Listings -- Quantum enveloping algebras -- Connections with algebraic groups -- Root vectors and PBW-basis -- Levi and parabolic subalgebras -- The subalgebra Uq(uj) -- Adjoint action -- Finite dimensionality of cohomology groups -- Spectral sequences and Euler characteristic -- Induction functors -- Computation of and N -- Subroot systems defined by weights -- The case of the classical Lie algebras -- Standardizing -- Resolution of singularities -- Normality of orbit closures -- Combinatorics and the Steinberg Module -- Steinberg weights -- Weights of -- Multiplicity of the Steinberg module -- Proof of Proposition 4.2.1 -- The weight -- Types Bn, Cn, Dn -- Type An -- Type An with l dividing n + 1 -- Exceptional Lie algebras -- The Cohomology Algebra H -- Spectral sequences, I -- Spectral sequences, II -- An identification theorem -- Spectral sequences, III -- Proof of main result, Theorem 1.2.3, I -- Spectral sequences, IV -- Proof of the main result, Theorem 1.2.3, II -- Finite Generation -- A finite generation result -- Proof of part (a) of Theorem 1.2.4 -- Proof of part (b) of Theorem 1.2.4 -- Comparison with Positive Characteristic -- The setting -- Assumptions -- Consequences -- Special cases -- Support Varieties over for the Modules and -- Quantum support varieties -- Lower bounds on the dimensions of support varieties -- Support varieties of : general results -- Support varieties of when l is good -- A question of naturality of support varieties -- The Constrictor Method I -- The Constrictor Method II -- Support varieties of when l is bad -- E6 when 3 l -- F4 when 3 l -- E7 when 3 l -- E8 when 3 l, 5 l -- Support varieties of when l is bad. 650 0 $a Cohomology operations
- Control code
- ssj0001108985
- Dimensions
- unknown
- Extent
- 1 online resource (ix, 93 pages)
- Form of item
- online
- Governing access note
- Access restricted to subscribing institutions
- Isbn
- 9780821891759
- Isbn Type
- (pbk. : acid-free paper)
- Lccn
- 2013051269
- Specific material designation
- remote
- System control number
- (WaSeSS)ssj0001108985
- Label
- Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)
- Bibliography note
- Includes bibliographical references (pages 89-93)
- Contents
- Preliminaries and Statement of results -- Some preliminary notation -- Main results -- Quantum groups, actions, and cohomology -- Listings -- Quantum enveloping algebras -- Connections with algebraic groups -- Root vectors and PBW-basis -- Levi and parabolic subalgebras -- The subalgebra Uq(uj) -- Adjoint action -- Finite dimensionality of cohomology groups -- Spectral sequences and Euler characteristic -- Induction functors -- Computation of and N -- Subroot systems defined by weights -- The case of the classical Lie algebras -- Standardizing -- Resolution of singularities -- Normality of orbit closures -- Combinatorics and the Steinberg Module -- Steinberg weights -- Weights of -- Multiplicity of the Steinberg module -- Proof of Proposition 4.2.1 -- The weight -- Types Bn, Cn, Dn -- Type An -- Type An with l dividing n + 1 -- Exceptional Lie algebras -- The Cohomology Algebra H -- Spectral sequences, I -- Spectral sequences, II -- An identification theorem -- Spectral sequences, III -- Proof of main result, Theorem 1.2.3, I -- Spectral sequences, IV -- Proof of the main result, Theorem 1.2.3, II -- Finite Generation -- A finite generation result -- Proof of part (a) of Theorem 1.2.4 -- Proof of part (b) of Theorem 1.2.4 -- Comparison with Positive Characteristic -- The setting -- Assumptions -- Consequences -- Special cases -- Support Varieties over for the Modules and -- Quantum support varieties -- Lower bounds on the dimensions of support varieties -- Support varieties of : general results -- Support varieties of when l is good -- A question of naturality of support varieties -- The Constrictor Method I -- The Constrictor Method II -- Support varieties of when l is bad -- E6 when 3 l -- F4 when 3 l -- E7 when 3 l -- E8 when 3 l, 5 l -- Support varieties of when l is bad. 650 0 $a Cohomology operations
- Control code
- ssj0001108985
- Dimensions
- unknown
- Extent
- 1 online resource (ix, 93 pages)
- Form of item
- online
- Governing access note
- Access restricted to subscribing institutions
- Isbn
- 9780821891759
- Isbn Type
- (pbk. : acid-free paper)
- Lccn
- 2013051269
- Specific material designation
- remote
- System control number
- (WaSeSS)ssj0001108985
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/portal/Cohomology-for-quantum-groups-via-the-geometry-of/yRnxjv2l0C8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/portal/Cohomology-for-quantum-groups-via-the-geometry-of/yRnxjv2l0C8/">Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/portal/Cohomology-for-quantum-groups-via-the-geometry-of/yRnxjv2l0C8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/portal/Cohomology-for-quantum-groups-via-the-geometry-of/yRnxjv2l0C8/">Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>