#
Automorphic forms
Resource Information
The concept ** Automorphic forms** represents the subject, aboutness, idea or notion of resources found in **Bowdoin College Library**.

The Resource
Automorphic forms
Resource Information

The concept

**Automorphic forms**represents the subject, aboutness, idea or notion of resources found in**Bowdoin College Library**.- Label
- Automorphic forms

## Context

Context of Automorphic forms#### Subject of

No resources found

No enriched resources found

- Automorphic forms
- Automorphic forms and L-functions for the group GL(n,R)
- Automorphic forms and Shimura varieties of PGSp (2)
- Automorphic forms and representations
- Automorphic forms on SL2(R)
- Automorphic representations and L-functions for the general linear group
- Automorphic representations and L-functions for the general linear group, Volume 1
- Automorphic representations of low rank groups
- Cycle spaces of flag domains : a complex geometric viewpoint
- Deformation theory and local-global compatibility of Langlands correspondences
- Holomorphic automorphic forms and cohomology
- Introductory lectures on automorphic forms,
- Local newforms for GSp(4)
- Modern analysis of automorphic forms by example
- Multiple Dirichlet series, L-functions and automorphic forms
- On central critical values of the degree four L-functions for GSp(4) : : the fundamental lemma., III
- On central critical values of the degree four L-functions for GSp(4) : the fundamental lemma
- Quadratic and higher degree forms
- Quantization and arithmetic
- Representation theory and automorphic forms
- Representation theory, complex analysis, and integral geometry
- Shimura varieties
- Six short chapters on automorphic forms and L-functions
- Special values of Dirichlet series, monodromy, and the periods of automorphic forms
- Special values of automorphic cohomology classes
- The Gross-Zagier formula on Shimura curves
- The Selberg trace formula III : inner product formulae (initial considerations)
- The descent map from automorphic representations of GL(n) to classical groups
- The dimension of spaces of automorphic forms on a certain two-dimensional complex domain
- The fundamental lemma of the Shalika subgroup of GL(4)
- The meromorphic continuation and functional equations of cuspidal Eisenstein series for maximal cuspidal groups
- To an effective local Langlands correspondence
- Topological automorphic forms

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/resource/Mu10KQ9oRY0/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/resource/Mu10KQ9oRY0/">Automorphic forms</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Automorphic forms

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/resource/Mu10KQ9oRY0/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/resource/Mu10KQ9oRY0/">Automorphic forms</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>`