#
Arithmetical algebraic geometry
Resource Information
The concept ** Arithmetical algebraic geometry** represents the subject, aboutness, idea or notion of resources found in **Bowdoin College Library**.

The Resource
Arithmetical algebraic geometry
Resource Information

The concept

**Arithmetical algebraic geometry**represents the subject, aboutness, idea or notion of resources found in**Bowdoin College Library**.- Label
- Arithmetical algebraic geometry

## Context

Context of Arithmetical algebraic geometry#### Subject of

No resources found

No enriched resources found

- Algebraic geometry and arithmetic curves
- An arithmetic Riemann-Roch theorem for singular arithmetic surfaces
- Analytic methods in arithmetic geometry : Arizona Winter School, 2016 Analytic Methods in Arithmetic Geometry, March 12-16, 2016, The University of Arizona, Tucson, AZ
- Applied algebraic dynamics
- Arithmetic and Geometry : Ten Years in Alpbach (AMS-202)
- Arithmetic compactifications of PEL-type Shimura varieties
- Berkeley lectures on p-adic geometry
- Discriminant equations in Diophantine number theory
- Heights in diophantine geometry
- Hilbert modular forms : mod p and p-adic aspects
- Hilbert's tenth problem : relations with arithmetic and algebraic geometry : workshop on Hilbert's tenth problem : relations with arithmetic and algebraic geometry, November 2-5, 1999, Ghent University, Belgium
- Kolyvagin systems
- Logarithmic forms and diophantine geometry
- Modular forms and special cycles on Shimura curves
- New foundations for geometry : two non-additive languages for arithemtical geometry
- O-minimality and diophantine geometry
- Point-counting and the Zilber-Pink conjecture
- Quantitative arithmetic of projective varieties
- Rational points, rational curves, and entire holomorphic curves on projective varieties : CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathématiques, Université de Montréal, Québec, Canada
- The Brauer-Grothendieck group
- The Gross-Zagier formula on Shimura curves
- The large sieve and its applications : arithmetic geometry, random walks and discrete groups / E. Kowalski

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/resource/OTYe00Fj_uM/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/resource/OTYe00Fj_uM/">Arithmetical algebraic geometry</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Arithmetical algebraic geometry

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/resource/OTYe00Fj_uM/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/resource/OTYe00Fj_uM/">Arithmetical algebraic geometry</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>`