Introductory Lectures on Equivariant Cohomology : (AMS-204)
Resource Information
The work Introductory Lectures on Equivariant Cohomology : (AMS-204) represents a distinct intellectual or artistic creation found in Bowdoin College Library. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Introductory Lectures on Equivariant Cohomology : (AMS-204)
Resource Information
The work Introductory Lectures on Equivariant Cohomology : (AMS-204) represents a distinct intellectual or artistic creation found in Bowdoin College Library. This resource is a combination of several types including: Work, Language Material, Books.
- Label
- Introductory Lectures on Equivariant Cohomology : (AMS-204)
- Title remainder
- (AMS-204)
- Statement of responsibility
- Loring W. Tu
- Language
-
- eng
- eng
- Summary
- This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics.Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study
- Cataloging source
- DE-B1597
- Government publication
- other
- Language note
- In English
- Nature of contents
- dictionaries
- Series statement
- Annals of Mathematics Studies
- Series volume
- 204
- Target audience
- specialized
Context
Context of Introductory Lectures on Equivariant Cohomology : (AMS-204)Work of
No resources found
No enriched resources found
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/resource/SowwTQCmxQc/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/resource/SowwTQCmxQc/">Introductory Lectures on Equivariant Cohomology : (AMS-204)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Work Introductory Lectures on Equivariant Cohomology : (AMS-204)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bowdoin.edu/resource/SowwTQCmxQc/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bowdoin.edu/resource/SowwTQCmxQc/">Introductory Lectures on Equivariant Cohomology : (AMS-204)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bowdoin.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="https://link.bowdoin.edu/">Bowdoin College Library</a></span></span></span></span></div>